Abstract

Hydrogenation of dicylcopentadiene (DCPD) into endo-tetrahydrodicylcopentadiene (endo-THDCPD), in the presence of a Pd/Al2O3 catalyst, was experimentally and theoretically studied in a quasi-adiabatic trickle-bed reactor (TBR) with a diameter of 24 mm and a length of 850 mm. Effects of several operation parameters, including the liquid hourly space velocity (LHSV) (5.86−14.65 h-1), hydrogen pressure (1.0−2.0 MPa), inlet liquid concentration (0.52−1.35 mol/L), and inlet temperature (319.15−379.15 K) on the TBR performance were investigated systematically in terms of DCPD conversions, THDCPD yields, global hydrogenation rates, and axial temperature profiles. A plug-flow model for TBR incorporating partial wetting, mass and enthalpy balance, and phase equilibia behavior was developed to simulate the experimental results, based on a phenomenological pellet-scale model suggested by Rajashekharam et al. in a previous publication [Chem. Eng. Sci. 1998, 53 (4), 787−805]. The comparisons of experimental and simulated results indicated that the developed model reliably predicted the performance and axial temperature profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.