Abstract

Results for a room temperature contacting method applied to the p -type rear surface of monocrystalline and multicrystalline solar cell structures are presented. Monocrystalline silicon devices with the rear contacts prepared using the point contacting by localized dielectric breakdown method are reported with an efficiency of 19.2%. The devices show improved measurements of key performance metrics of ρc of 1.6 ± 0.8 mΩcm2 and J 0 c of 2100 ± 650 fAcm−2. This contacting approach is also demonstrated for multicrystalline silicon cells, with no evidence of parasitic breakdown at grain boundary sites. The multicrystalline device implementation highlights a key advantage of this contacting method, namely a relatively free choice of annealing temperature. This flexibility allows process optimization such that the activation of light-and-elevated-temperature-induced degradation is prevented in hydrogenated multicrystalline silicon, while still maximizing the benefits to bulk lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.