Abstract

Endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative diseases, including Parkinson's disease. The present study attempted to investigate the effect of hydrogen sulfide (H(2)S) on 6-hydroxydopamine (6-OHDA)-induced ER stress in SH-SY5Y cells. We found in the present study that exogenous application of sodium hydrosulfide (NaHS; an H(2)S donor, 100 μM) significantly attenuated 6-OHDA (50 μM)-induced cell death. NaHS also reversed the upregulation of cleaved poly(ADP-ribose) polymerase and caspase 9 in 6-OHDA-treated cells. Consistent with its cytoprotective effects, NaHS markedly reduced 6-OHDA induced-ER stress responses, including the upregulated levels of eukaryotic initiation factor-2α phosphorylation, glucose-regulated protein 78, and C/EBP homologous protein expression. The protective effect of H(2)S on ER stress was attenuated by blockade of Akt activity with an Akt inhibitor or inhibition of heat shock protein (Hsp)90 with geldanamycin but not by suppression of ERK1/2 with PD-98059. Blockade of Akt also significantly decreased the protein abundance of Hsp90 in SH-SY5Y cells. Moreover, overexpression of cystathionine β-synthase (a main H(2)S-synthesizing enzyme in the brain) elevated the Hsp90 protein level and suppressed 6-OHDA-induced ER stress. In conclusion, the protective effect of H(2)S against 6-OHDA-induced ER stress injury in SH-SY5Y cells involves the Akt-Hsp90 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.