Abstract

Heading Chinese cabbage (Brassica rapa L. syn. B. campestris L. ssp. chinensis Makino var. pekinensis (Rupr.) J. Cao et Sh. Cao) is a cruciferous Brassica vegetable that has a triplicate genome, owing to an ancient genome duplication event. It is unclear whether the duplicated homologs have conserved or diversified functions. Hydrogen sulfide (H2S) is a plant gasotransmitter that plays important physiological roles in growth, development, and responses to environmental stresses. The modification of cysteines through S-sulfhydration is an important mechanism of H2S, which regulates protein functions. H2S promotes flowering in Arabidopsis and heading Chinese cabbage. Here we investigated the molecular mechanisms of H2S used to promote flowering in the latter. Four, five, and four BraFLC, BraSOC I, and BraFT homologs were identified in heading Chinese cabbage. Different BraFLC proteins were bound to different CArG boxes in the promoter regions of the BraSOC I and BraFT homologs, producing different binding patterns. Thus, there may be functionally diverse BraFLC homologs in heading Chinese cabbage. Exogenous H2S at 100 μmol L−1 significantly promoted flowering by compensating for insufficient vernalization. BraFLC 1 and BraFLC 3 underwent S-sulfhydration by H2S, after which their abilities to bind most BraSOC I or BraFT promoter probes weakened or even disappeared. These changes in binding ability were consistent with the expression pattern of the BraFT and BraSOC I homologs in seedlings treated with H2S. These results indicated that H2S signaling regulates flowering time. In summary, H2S signaling promoted plant flowering by weakening or eliminating the binding abilities of BraFLCs to downstream promoters through S-sulfhydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.