Abstract

Hydrogen storage is an active area of research particularly due to urgent requirements for green energy technologies. In this paper, we study the storage of hydrogen gas molecules in terms of physical adsorption on a carbon-based nanomaterial, i.e., a novel graphene-carbon nanotube hybrid. The novel carbon nanostructures were prepared from pristine nanotubes and graphene sheets using molecular dynamics simulations and hydrogen storage quantified in terms of gravimetric capacity was simulated using grand canonical Monte Carlo Simulations. We found the highest storage capacity of 5.90 wt% at room temperature and 100 bar with high reversibility of operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.