Abstract

Metal organic frameworks (MOF) are a type of nanoporous materials with large specific surface area, which are especially suitable for gas separation and storage. In this work, we report a new approach of crosslinking UiO-66-(OH)2 to enhance its hydrogen storage capacity. UiO-66-(OH)2 was synthesized using hafnium tetrachloride (HfCl4) and 2, 5-dihydroxyterephthalic acid (DTPA) through a canonical modulated hydrothermal method (MHT), followed by a post-synthesis modification, which is to form a crosslinking structure inside the porous structure of UiO-66-(OH)2. During the modification process, the phenolic hydroxyl groups on the UiO-66-(OH)2 reacted with methanal, and HCl aqueous solution and triethylamine served as catalyst (the products denoted as UiO-66-H and UiO-66-T, respectively). Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance spectroscopy (13C NMR) proved that the crosslinking was formed. The BET specific surface area and the average adsorption pore size of UiO-66-H and UiO-66-T significantly increased after modification. The hydrogen storage capacity of UiO-66-H reached a maximum of 3.37 wt% (16.87 mmol/g) at 77 K, 2 MPa. Hydrogen adsorption enthalpy of UiO-66-T was 0.986 kJ/mol, which was higher than that of UiO-66-(OH)2 (0.695 kJ/mol). This work shows that UiO-66-(OH)2 is a promising candidate for potential application in high-performance hydrogen storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.