Abstract

We are reporting the synthesis, the physicochemical, and the hydrogen sorption properties of a novel bcc high entropy alloy Ti0.30V0.25Cr0.10Zr0.10Nb0.25. At room temperature, the alloy rapidly absorbs hydrogen reaching a capacity of 2.0 H/M (3.0 wt.%) and forming a dihydride with fcc structure, as confirmed by both synchrotron X-ray diffraction and neutron diffraction. The absorption Pressure–Composition Isotherms corroborated with synchrotron X-ray diffraction prove that the reaction with hydrogen occurs within two steps, i.e., bcc alloy → bcc monohydride → fcc dihydride. The thermodynamic parameters calculated for the second step transformation evidence the formation of a stable dihydride with ΔHabs = −75 kJ/molH2. The phase transition during hydrogen/deuterium desorption was investigated by in situ synchrotron X-ray and neutron diffraction confirming a reversible reaction with hydrogen. Furthermore, the cycling properties show a decrease of the capacity over the first cycles followed by a stabilization at 2.44 wt.%, whereas the absorption kinetics improve after the first cycle reaching full capacity after only 30 s at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.