Abstract

2Mg-Fe mixtures produced by high-energy ball milling were consolidated into bulk form by hot extrusion at different processing temperatures (573 K (300 °C), 623 K (350 °C) and 673 K (400 °C)), aiming to evaluate their influence on the structure and microstructure of bulk materials and their consequent influence on the hydrogen sorption properties. In spite being in the nanosize range, the highest the processing temperature, the larger the grain sizes. However, the nanometric grain size remained after any hot extrusion condition, as estimated by Rietveld refinement. The pinning effect of Fe on Mg grain boundaries explained this effect. In the first absorption (activation), powders showed a hydrogen storage capacity of ∼4.53 wt%, while the extruded samples (bulk materials) reached almost the same capacity during the period of hydrogenation (∼94% of the maximum hydrogen storage capacity for Mg2FeH6 - 5.5 wt%). The smallest crystallite sizes and highest surface area for hydrogenation explain the good performance of powders. However, when comparing only extruded samples, it was observed that the highest capacity and the lowest incubation times were mainly related to grain sizes and to the favorable texture along (002) plane of αMg. The desorption temperature of bulk materials was very similar to that of powders, which is good considering the lower surface area of bulk materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.