Abstract

In this work, we perform density functional theory (DFT) calculations to investigate the hydrogen adsorption on Pt4 cluster supported on pristine, B-, and N-doped graphene sheets. It is found that the doping B or N atom in the graphene could enhance the interaction between the Pt4 cluster and the supporting substrate. The first H2 molecule is found to be dissociative chemisorption on the three substrates. Further, dissociative and molecular adsorption of multiple H2 molecules are co-adsorbed on the three substrates. In addition, the interaction between Pt4(H2)x and the substrate is illustrated for the stability of Pt4(H2)x on the substrate. AIMD simulation is also performed to verify the stability and hydrogen storage. Accordingly, the B-graphene is predicted to be the most potential materials for hydrogen storage among these three materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.