Abstract
High-resolution core-level photoemission spectroscopy and temperature-programmed reaction experiments together with density functional theory calculations were used to elucidate on the atomic scale the chlorination mechanism of ruthenium dioxide RuO2(110) by hydrogen chloride exposure. The surface-selective chlorination accounts for the extraordinary stability of the RuO2 catalyst in the Sumitomo process-the heterogeneously catalyzed oxidation of hydrogen chloride by oxygen. The selective replacement of bridging oxygen atoms by chlorine atoms depends on the formation of water molecules serving as leaving groups. Water is produced by the chlorine-assisted recombination of two neighboring surface hydroxyl groups at around 450 K, a temperature where water instantaneously leaves the surface. Finally, the bridging vacancy is rapidly filled in by chlorine atoms, thereby forming bridging chlorine atoms. Preadsorbed hydrogen has shown to facilitate the chlorination process for stoichiometry reasons. The general strategy of transforming bridging O atoms into a good leaving group has been corroborated by the chlorination of RuO2(110) via CO pretreatment with CO2 as the leaving group and subsequent Cl-2 exposure. (Less)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.