Abstract

The reaction thermodynamics of sorption enhanced steam reforming (SESR) of acetic acid as a model compound of bio-oil for hydrogen production were investigated and contrasted with acetic acid steam reforming (SR). The most favorable temperature for SR is approximately 650 °C. However, the optimum temperature for SESR is around 550 °C, which is about 100 °C lower than that for SR. The highest hydrogen concentration from SR is only 67%, which is below the basic requirement of hydrogen purity for fuel cells. In SESR, hydrogen purities are over 99% in 500-550 °C with a calcium oxide to acetic acid molar ratio (CAMR) of 4 and a water to acetic acid molar ratio (WAMR) greater than 6. The results show that hydrogen production from sorption enhanced steam reforming of acetic acid should be a promising direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.