Abstract
The research intended to evaluate the catalytic activity of Ni-doped on KCC-1 to produce hydrogen thru the reforming process of glycerol and CO2 (GDR). A hydrothermal microemulsion approach was applied to synthesize mesoporous silica KCC-1, which was then impregnated with 10 wt% Ni using an ultrasonic-assisted impregnation technique. XRD, BET, and FTIR were used to analyze the physicochemical characteristics of KCC-1 and Ni loaded on KCC-1. A stainless-steel vertical reactor fixed with a catalyst bed inside was used to run the GDR process at 800 °C, Patm, and a 1:1 ratio of glycerol to CO2. KCC-1 exposed sphere fibrous feature bordered with dendritic fibre observed by TEM with a 268 m2/g in specific surface area and 200–400 nm in particle size. The Ni/KCC-1 catalyst achieved 45.25 %, 33.71 %, and 65.64 % glycerol conversion and syngas (H2 and CO) yields, respectively. The high catalytic performance was credited to the fibre-like structure of KCC-1, which facilitates the access of bulky mass glycerol and CO2 to the Ni active species. Thus, this finding has proven that the exceptional structure of the support material could promise catalytic performance in various applications, particularly glycerol dry reforming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.