Abstract

In this study, the synthesis of hybrid photocatalysts of Zn-Al-In mixed metal oxides were activated by using visible light, derived from Zn-Al-In layered double hydroxide (ZnAlIn-LDH), and these nanocomposites demonstrated high efficiency for photocatalytic H2 production under UV light when using methanol as a sacrificial agent. The most active photocatalytic material produced 372 μmol h−1 g−1 of H2. The characterization of these materials included X-ray diffraction (DRX), infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), X-ray spectroscopy (XEDS), scanning electron microscopy analysis (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy, and N2- physisorption. In addition, the materials were characterized by photoelectrochemical techniques to explain the photocatalytic behavior. Subsequently, the photocatalytic performance for the water-splitting reactions under visible irradiation was evaluated. The ZnAlIn-MMOs with an In/(Al + In) molar ratio of 0.45 exhibited the highest photocatalytic activity in tests under visible light, attributed to the efficient separation and transport of photogenerated charge carriers originating from the new nanocomposite. This discovery indicates a method for developing new types of heteronanostructured photocatalysts which are activated by visible light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.