Abstract

Hydrogen is a clean energy carrier, and its utilization will reduce environmental problems related to fossil fuels one. Biomass is an inexhaustible renewable source to generate biocompounds. Glycerol, obtained from a crescent biodiesel industry, is an abundant bio-substrate to produce hydrogen. The steam reforming of glycerol was studied employing 4Ni/Al2O3, 4Co–4Ni/Al2O3, and 12Co–4Ni/Al2O3 catalysts at 300, 500, and 700 °C, 1 atm, 10 h−1 WHSV, 6:1 water:glycerol molar ratio (WGMR), 0.17 ml min−1 glycerol solution feed flow rate and time-on-stream 8 h. The main product obtained was H2, followed by CO2, CO, and CH4 in smaller proportion. Co promotes H2 production and unfavors CO2 generation when temperature decreases; CH4 formation is observed at higher temperature. A low Co loading produces the largest H2 and CO2 amounts at the lowest temperature. A high Co loading improves H2 production at lower temperature, but this does not occur at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.