Abstract

The 2-chloro-4-nitroaniline liquid-phase hydrogenation kinetics on supported palladium and platinum catalysts differing in the nature of the carrier and the active metal content was studied for the first time. The experiment was carried out at elevated hydrogen pressures in the range of 9 - 12 atm and 303 K in solvents 2-propanol-water and ethyl acetate in the reactor such as Vishnevsky autoclave. The main kinetic parameters of the reaction have been determined, and the influence of various parameters on the regularities of the process has been established. It is shown that an increase in the active metal content in the catalyst leads to an increase in the rate of the hydrogenation reaction of 2-chloro-4-nitroaniline. When using platinum supported catalysts, the rate of hydrogenation of 2-chloro-4-nitroaniline is significantly higher than when using supported palladium catalysts. The replacement of the liquid phase of the catalyst system with 2-propanol by ethyl acetate adversely affects the reaction rate. The influence of the catalytic system nature and composition on the target product dehalogenation degree was determined. It was found that when carrying out the reaction at elevated hydrogen pressures, it is preferable to use low-percentage platinum catalysts, rather than palladium catalysts, since the former provide less dehalogenation of the target product.
 For citation:
 Klimushin D.M., Krasnov A.I., Filippov D.V., Sharonov N.Yu. Hydrogen pressure, solvent and catalyst nature influence on 2-chloro-4-nitroaniline hydrogenation regularities. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 30-35

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.