Abstract
AbstractThe effect of hydrogen passivation on photovoltaic performance of 1 MeV electron irradiated polycrystalline cast silicon solar cells is described. These cells were processed on cast p-type boron doped polycrystalline silicon substrates using standard technology. Passivation was made by low-energy hydrogen ion implantation on the front side. Cells performance was measured as a function of fluence, and it was found that the hydrogenated cell had the higher radiation resistance.Defect behavior were studied using deep level transient spectroscopy and infra-red spectroscopy. It was shown that the concentration of vacancies (Ec −0,09 eV), divacancies (Ec −0,23 eV) and A-centers (Ec −0,18 eV) is significantly lower in hydrogenated samples. This consistency strengthens the belief that hydrogen interacts with vacancy-type defects to prevent formation of the secondary radiation defects. It is confirmed by IR-measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.