Abstract

The effect of tap water contaminants on the kinetics of the hydrogen evolution reaction on a nickel electrode in 1 mol dm −3 KOH was investigated by galvanostatic polarization and electrochemical impedance spectroscopy techniques. It was found that the tap water contaminants lead to an increase in the overpotential of the hydrogen evolution reaction, especially at low temperatures. The combination of electrochemical techniques, as well as physicochemicals such as SEM and EDAX ones, confirmed that the contaminants are specifically adsorbed and blocked the available electrode surface for the reaction. It was concluded that they do not participate in an electrochemical reaction in the potential region where HER occurs. Besides the short term negative impact on the rate of hydrogen evolution, a 55 h test revealed that the overpotential shows a steady increase over time in presence of tap water contaminants, while in absence of these contaminants the overpotential is constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.