Abstract

LiBH4 can be destabilized by AlH3 addition. In this work, the hydrogen desorption kinetics of the destabilized LiBH4AlH3 composites were investigated. Isothermal hydrogen desorption studies show that the LiBH4 + 0.5AlH3 composite releases about 11.0 wt% of hydrogen at 450 °C for 6 h and behaves better kinetic properties than either the pure LiBH4 or the LiBH4 + 0.5Al composite. The apparent activation energy for the LiBH4 decomposition in the LiBH4 + 0.5AlH3 composite estimated by Kissinger's method is remarkably lowered to 122.0 kJ mol−1 compared with the pure LiBH4 (169.8 kJ mol−1). Besides, AlH3 also improves the reversibility of LiBH4 in the LiBH4 + 0.5AlH3 composite. For the LiBH4 + xAlH3 (x = 0.5, 1.0, 2.0) composites, the decomposition kinetics of LiBH4 are enhanced as the AlH3 content increases. The sample LiBH4 + 2.0AlH3 can release 82% of the hydrogen capacity of LiBH4 in 29 min at 450 °C, while only 67% is obtained for the LiBH4 + 0.5AlH3 composite in 110 min. Johnson−Mehl−Avrami (JMA) kinetic studies indicate that the reaction LiBH4 + Al → ‘LiAlB’ + AlB2 + H2 is controlled by the precipitation and subsequently growth of AlB2 and LiAlB compounds with an increasing nucleation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.