Abstract

The research performed herein consisted of the design, construction, and testing of a dual stage metal hydride hydrogen compression system intended to be used with lower grade geothermal or waste energy sources. The metal hydrides used in this study were LaNi 5 and Ca 0.6Mm 0.4Ni 5. A Finite Time Thermodynamics (FTT) model was also developed and the model proved useful in determining how the compression results and energy requirements for the system change with variations in the system parameters. Dual stage system results showed a final compression ratio of approximately 12 when using cooling and heating temperatures of 10 °C and 90 °C, respectively. The final output pressures and compression ratios were found to follow an upward trend when increasing the heating bath temperatures. It can be concluded from the experimental results, that though the dual stage hydrogen compression system has room for improvement, it is an effective way of compressing the hydrogen from low initial pressures while using low grade energy sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.