Abstract
AbstractThe rate of singlet fission, the process of generating two triplet excitons with photoexcitation of one singlet exciton, depends on a combination of singlet/triplet energy balance and intermolecular coupling. Here, we perform carboxylic acid functionalization of anthradithiophene (ADT) derivatives that results in hydrogen bonds that drive molecular orientation and strong electronic coupling of polycrystalline ADT thin films, leading to ultrafast singlet fission without significant enthalpic driving force. ADT with a single carboxylic acid group exhibits weak intermolecular coupling and slow and inefficient singlet fission, much like the parent ADT, and substitution of different alkylsilyl solubilizing groups has little effect. However, the addition of two carboxylic acid groups on either end of the long axis favors significant coupling and crystallinity in as‐deposited thin films that increase the effective singlet fission rate by roughly three orders of magnitude. The properties of the triplet pair, particularly its propensity to form long‐lived independent triplets, are also influenced by the degree of long‐range intermolecular coupling. The enhancement of intermolecular coupling specific to singlet fission using the ubiquitous cyclic hydrogen bonding motif could impact triplet pair utilization schemes in a variety of contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.