Abstract
Protons involved in the H-bond system in 1,2-diazine-chloranilic acid (2 : 1) are assumed to be in jumping motion in the double-minimum potential corresponding to the two extreme electronic states of O-H...N and O-...H-N+. 14N nuclear quadrupole coupling constants were determined by 1H-14N nuclear quadrupole double resonance. Assuming that the observed coupling constants are result of a fast exchange of the two extreme electronic states, the coupling constants for each state were estimated by use of the equilibrium populations of the two extreme states determined from multi-temperature X-ray single-crystal diffraction. It was suggested that not only the population but also the electron distribution of the extreme electronic states itself changes with temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.