Abstract

Anharmonic vibrational force field calculations provide a quantitative understanding of the width and substructure of the linear IR-absorption spectrum of the O-H stretching mode in acetic acid dimers (CH3-COOH)2 and (CD3-COOH)2. Anharmonic coupling of the high-frequency upsilon(OH) mode to fingerprint and low-frequency modes is included resulting in 11- and 9-dimensional vibrational Hamiltonians. A sixth-order force field covering up to three-body interactions is used. Force constants are calculated by fitting one-dimensional potential-energy surfaces and a finite difference procedure applying density-functional theory [Becke 3 Lee-Yang-Parr 6-311+G(d,p)]. It is demonstrated that both anharmonic coupling to low-frequency modes as well as Fermi resonance coupling with fingerprint modes are important mechanisms explaining the line shape of the O-H stretching IR-absorption band in acetic acid dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.