Abstract

We use molecular dynamics simulations to examine the homogeneous nucleation of ice VII from metastable liquid water. An unsupervised machine learning classification identifies two distinct local structures composing Ice VII nuclei. The seeding method, combined with the classical nucleation theory (CNT), predicts the solid-liquid interfacial free energy, consistent with the value from the mold integration method. Meanwhile, the nucleation rates estimated from the CNT framework and brute force spontaneous nucleations are inconsistent, and we discuss the reasons for this discrepancy. Structural and dynamical heterogeneities suggest that the potential birthplace for an ice VII embryo is relatively ordered, although not necessarily relatively immobile. Moreover, we demonstrate that without the formation of hydrogen-bond links, ice VII embryos do not grow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.