Abstract

MHC class II molecules associate with peptides through pocket interactions and the formation of hydrogen bonds. The current paradigm suggests that the interaction of side chains of the peptide with pockets in the class II molecule is responsible for the formation of stable class II-peptide complexes. However, recent evidence has shown that the formation of hydrogen bonds between genetically conserved residues of the class II molecule and the main chain of the peptide contributes profoundly to peptide stability. In this study, we have used I-A(k), a class II molecule known to form strong pocket interactions with bound peptides, to probe the general importance of hydrogen bond integrity in peptide acquisition. Our studies have revealed that abolishing hydrogen bonds contributed by positions 81 or 82 in the beta-chain of I-A(k) results in class II molecules that are internally degraded when trafficked through proteolytic endosomal compartments. The presence of high-affinity peptides derived from either endogenous or exogenous sources protects the hydrogen bond-deficient variant from intracellular degradation. Together, these data indicate that disruption of the potential to form a complete hydrogen bond network between MHC class II molecules and bound peptides greatly diminishes the ability of class II molecules to bind peptides. The subsequent failure to stably acquire peptides leads to protease sensitivity of empty class II molecules, and thus to proteolytic degradation before export to the surface of APCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.