Abstract
ABSTRACTEffect of catalyst thickness (2, 4, and 6 nm) and acetylene-hydrogen gas ratio (1/4, 2/4, and 3/4) on the synthesis of carbon nanotubes is reported in this article. Synthesized nanotubes are characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and Raman effect. From SEM results, nanotubes growth is less for higher thickness, as at higher thickness catalyst nanoparticles agglomerate which suppress the growth of nanotubes. Raman spectroscopy results reveal that at higher thickness defects density increases. Nanotube of better crystallinity and graphitic outer walls grows for lower acetylene-hydrogen gas ratio and at smaller thickness of catalyst layer. The sheet resistance of carbon nanotube thin film is measured by using Hall effect measurement systems. Smallest sheet resistance among synthesized multi-walled carbon nanotubes sample is obtained for nanotubes grown on 2 nm thick catalyst film and is 0.9 kΩ/square.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.