Abstract

Mg, in the form of MgH2, is one kinds of materials widely used as hydrogen storage materials. Absorption and desorption properties of hydrogen which comes from metal hydride depend on materials itself, addition of elements, as well as manufacturing method. In this research, Mg as hydrogen storage were prepared by mechanical alloying with Ni, Cu, and Al as element addition and variation milling time for 10, 20 and 30 hours. Some morphological analyses (XRD, SEM) were done to observe phase transformation. Absorption and desorption properties characterization were employed by DSC and hydrogenation tests. The improvement in milling time decreased particle size, therefore enhanced wt% of absorbed hydrogen and decrease onset desorption temperature. However, the excessive of agglomeration and cold welding on mechanical alloying process resulted in bigger particle size. Alloying elements, Al and Cu, served as catalyst, while Ni acted as alloying which reacted with hydrogen. Mg10wt%Al with 20 hours milling time at hydrogenation temperature 250°C, 3 atm pressure, and 1 hour holding time resulted in the highest weight percent of H2 (0.38%wt). However, Mg10wt%Al with 30 hours milling time had the lowest onset temperature, 341.49°C

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.