Abstract

Advances in photomedicine and optogenetics have defined the problem of efficient light delivery in vivo. Recently, hydrogels have been proposed as alternatives to glass or polymer fibers. These materials provide remarkable versatility, biocompatibility and easy fabrication protocols. Here, we investigate the usability of waveguides from poly(ethylene glycol) dimethacrylate for targeted light delivery and diffusion. Different hydrogel compositions were characterized with regard to water content, chemical stability, elasticity, refractive index and optical losses. Differences in refractive index were introduced to achieve targeted light delivery, and scattering polystyrene particles were dispersed in the hydrogel samples to diffuse the incident light. Complex constructs were produced to demonstrate the versatility of hydrogel waveguides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.