Abstract

AbstractValidation of a linear numerical model of wave interactions with floating compliant discs is sought using data obtained from the wave basin experiments reported in Part 1 (Montielet al. J. Fluid Mech., vol. 723, 2013, pp. 604–628). Comparisons are made for both single-disc tests and the two-disc tests in which wave interactions between discs are observed. The deflection of the disc or discs is separated into the natural modes of vibrationin vacuo. The decomposition allows the rigid-body motions and flexural motions to be analysed separately. Rigid-body motions are accurately replicated by the numerical model but, although passable agreement is found, the amplitudes of flexural modes are consistently overestimated. Extensions of the numerical model are used to discount the experimental configuration as a source of the discrepancies. An enhanced viscoelastic model for the discs is also proposed, which results in improved model/data agreement for the flexural motions but cannot account for all of the disagreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.