Abstract

The boundary value problem is formulated to predict the hydroelastic response of a matlike floating circular plate advancing slowly in waves. The plate is idealized as an elastic plate with zero draught, and the potential flow theory is employed with low forward-speed assumptions. These assumptions allow the steady disturbance potential due to forward speed to be neglected, simplifying the problem considerably. By applying the eigenfunction-expansion domain-matching method, analytical solutions are derived for the scattering and radiation potentials up to the leading-order terms of the speed-dependent parts. The far-field approach is adopted to obtain the expression for the wave drift force. Numerical results are also presented for the typical plate geometry, which demonstrates the significant effect of the forward speed on the hydroelastic response and wave drift force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.