Abstract

In the past year it has been shown that one can construct an approximate (d + 2) dimensional solution of the vacuum Einstein equations dual to a (d + 1) dimensional fluid satisfying the Navier-Stokes equations. The construction proceeds by perturbing the flat Rindler metric, subject to the boundary conditions of a non-singular causal horizon in the interior and a fixed induced metric on a given timelike surface r = rc in the bulk. We review this fluid-Rindler correspondence and show that the shear viscosity to entropy density ratio of the fluid on r = rc takes the universal value 1/4π both in Einstein gravity and in a wide class of higher curvature generalizations. Since the precise holographic duality for this spacetime is unknown, we propose a microscopic explanation for this viscosity based on the peculiar properties of quantum entanglement. Using a novel holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk, we calculate a shear viscosity and find that the ratio with respect to the entanglement entropy density is exactly 1/4π in four dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.