Abstract

The effects of solid particles on hydrodynamics and mixing in a three-phase fluidized bed bioreactor were discussed. The gas holdup, bubble size, and liquid-phase axial dispersion coefficient were measured in a 0.25-m id bubble column bioreactors containing low-density particles. The presence of low-density solid particles slightly increased gas holdup. The decrease in average bubble diameter with solid presence was found. For the three-phase system, the liquid-phase axial dispersion coefficients were higher than for the two-phase system. We extended a model for a gas holdup developed for a gas-liquid two-phase bubble column bioreactor to a gas-liquid-solid three-phase fluidized bed bioreactor. Using the present data and available data in the literature, the predictions of the proposed model were examined. The proposed model agreed with a wide range of the experimental data. A theoretical correlation for liquid-phase axial dispersion coefficient was developed using Kolmogoroff's theory of isotropic turbulence. Reasonable agreement was obtained between the predicted and experimental values of axial dispersion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.