Abstract

This theoretical work addresses the characterization of polymer-coated nanoparticles via the analysis of Taylor dispersion experiments. Our focus is on determining the apparent hydrodynamic radius and the related accuracy bias, which results from polydispersity and optical-absorption-weighted averages. To that end, we construct a statistical model addressing joint distributions of particle core size and ligand surface density, which determine the hydrodynamic radius and optical absorption of such nanoparticles. Our model predicts that a polymer shell that is thick compared with the core radius results in a smaller bias than a thin shell, and the bias may become even negative when ligand surface density is sufficiently high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.