Abstract

This study examines the hydrodynamic performance of short-crested wave interaction with a new porous cylindrical structure by using the scaled boundary finite element method (SBFEM), which is a semi-analytical technique combining the advantages of the finite element method and the boundary element method and with its own special features as well. The cylindrical structure consists of dual arc-shaped porous outer cylinders circumscribing an impermeable inner cylinder. A central feature of the newly extended method is that two virtual outer cylinders extending the arc-shaped porous outer cylinders with the same centre are introduced and variable porous-effect parameters are also introduced for the two virtual cylinders, so that the final SBFEM equation still can be handled in a closed-form analytical manner in the radial direction and by a finite element approximation in the circumferential direction. The entire computational domain is divided into two bounded and one unbounded domains, and a variational principle formulation is used to derive the SBFEM equation in each sub-domain. The velocity potential in bounded and unbounded domains is formulated using sets of Bessel and Hankel functions respectively, and the unknown coefficients are determined from the matching conditions. The results of numerical verification show that the approach discretises only the outermost virtual cylinder with surface finite-elements and fewer elements are required to obtain very accurate results. Influences of the incident wave parameters and structural configurations on the hydrodynamics are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.