Abstract

ABSTRACTThe aim of this study was to reduce the total resistance of a multi-purpose wind offshore supply vessel by optimising its hull. Resistance was computed using a potential flow boundary element method and a Reynolds-averaged Navier–Stokes equations solver. Optimised hull forms were obtained for the ship advancing at different ship speeds under calm water conditions, employing the two multi-objective optimisation algorithms, Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Simulated Annealing (MOSA). Using NSGA-II yielded slightly larger reductions of total resistances than MOSA. The greatest reductions were achieved at ship speeds between 11 and 14knots. At these speeds, a thinner and longer bulbous bow reduced resistance. At speeds greater than 15knots, a bloated bulbous bow was more helpful to reduce resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.