Abstract

This article presents a one-dimensional two-temperature hydrodynamic model to study the thermal and electrical behavior of a gallium arsenide (GaAs) PN junction solar cell. This model treats both electron and heat transfer on equal footing and includes Gauss’s law, continuity and momentum equations for electrons and holes, and energy balance using temperature for both carriers and lattice. A zero-order system of equations is obtained using asymptotic series expansions based on the electron Reynolds number for steady-state conditions. An iterative scheme is implemented to solve the zero-order system. The results show the influence of carriers and lattice temperatures in the electrical performance of a GaAs PN junction solar cell. Higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the thermal control in photovoltaic technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.