Abstract

Eccentric Keplerian discs are believed to be unstable to three-dimensional hydrodynamical instabilities driven by the time-dependence of fluid properties around an orbit. These instabilities could lead to small-scale turbulence, and ultimately modify the global disc properties. We use a local model of an eccentric disc, derived in a companion paper, to compute the nonlinear vertical ("breathing mode") oscillations of the disc. We then analyse their linear stability to locally axisymmetric disturbances for any disc eccentricity and eccentricity gradient using a numerical Floquet method. In the limit of small departures from a circular reference orbit, the instability of an isothermal disc is explained analytically. We also study analytically the small-scale instability of an eccentric neutrally stratified polytropic disc with any polytropic index using a WKB approximation. We find that eccentric discs are generically unstable to the parametric excitation of small-scale inertial waves. The nonlinear evolution of these instabilities should be studied in numerical simulations, where we expect them to lead to a decay of the disc eccentricity and eccentricity gradient as well as to induce additional transport and mixing. Our results highlight that it is essential to consider the three-dimensional structure of eccentric discs, and their resulting vertical oscillatory flows, in order to correctly capture their evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.