Abstract
Periodic variation of the distance between two weakly adhering bodies gives rise to a huge tangential motions of the sandwiched solvent layer (squeezing flow). Oscillations either can be induced by an external applied field or can spontaneously arise from the coupling with the solvent heat bath. First we calculated by the Navier-Stokes equation the components of the fluid velocity near two oscillating juxtaposed plates. Then we evaluated the influence of plate oscillations on the transport properties of a trace diffusant dissolved at t = 0 in the outer medium for both deterministic and stochastic excitations. By employing both analytical (Fokker-Planck) and coarse-grained molecular dynamics (MD) simulations, we proved that the entry and migration rates of the diffusant sharply increases with the oscillation amplitudes. Enhancement was related to relevant parameters like oscillation frequency, fluid layer thickness, fluid viscosity, and temperature. An extension to the case of oscillating multistacked lamellae has been also made. Theoretical and MD results suggest a significant enhancement of the diffusant flux even in the worse situation of thermally excited small amplitude fluctuations. Excitation arising from other sources (e.g., microwave or ultrasound irradiation of solid-fluid layered systems) could have a dramatic effect on the transport phenomena. Possible implications to relevant biological problems have been discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.