Abstract

Heave plates are structural components used for reducing the vibrations caused by environmental forces on marine and offshore structures by changing the hydrodynamic properties. The fact that the added mass increase via heave plates does not always lead to the structural response reduction underscores the role of damping in maintaining the vibration amplitude within allowable limits. In the present experimental study, a novel combined rigid-elastic design is used to improve the damping through the velocity increase in the elastic part and added mass creation in the central rigid part. The desired percentage of total added mass and damping can be adjusted by changing the rigid-to-elastic parts diameter ratio, which is the main scope of this experimental research. Frequency of vibration, which affects the elastic edge excited mode shapes, also affects the forming of the vortex shedding. Experimental tests show that the frequency increase generally causes high damping performance provided that the excited mode shapes are axisymmetric, which strongly depends on equivalent stiffness and mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.