Abstract

Abstract This paper presents a theoretical and experimental study of cavitation as an advanced oxidation process. The degradation rate of p-nitrophenol (PNP) was experimentally investigated and used as an estimator of the sonochemical effect in hydrodynamic cavitation. The PNP initial concentration was varied in the range 0.1–1 g L−1 and the pressure in the range 0.2–0.7 MPa, with a corresponding flow rate of 3.5–6.9 L min−1. In terms of removal rate and energy efficiency, an optimal inlet pressure value was found close to 0.4 MPa and cavitation number of 0.25. The calculated first-order kinetic constant values show the existence of an optimal configuration: k = 1.13 × 10−2 min−1 at 0.45 MPa with a value for the electrical energy per order EEO = 66.7 kWh m−3. Moreover, the kinetic data was purged from the influence of the experimental apparatus configuration, allowing for the evaluation of an intrinsic kinetic constant. The physical–chemical behavior of hydrodynamic cavitation is discussed on the basis of single bubble dynamics. The numerical simulations, at different inlet pressures, provided a good explanation of the values observed. Furthermore, a simple energy balance on cavitating bubbles, taking into account for the actual production of cavitating events, gave a further confirmation of the experimental trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.