Abstract

Compliant journal bearings are commonly used to support radial loads at extreme operating speeds and conditions where conventional bearings cannot operate. The journal and bearing system are supported by a thin lubricant film (gas) due to the hydrodynamic pressure distribution. To predict the bearing performance parameters, the compressible Reynolds equation is solved based on Infinitely Long Approximation (ILA), Finite Analysis (FA) and a new Modified Parabolic Approximation (MPA). The MPA method reduces the classical Reynolds equation to an ordinary differential equation. Appropriate equations and numerical solution are developed for treating a compressible Reynolds equation using MPA. A series of parametric study is presented to validate the new method. This method can be extended to study the dynamic characteristics of a gas bearing considering the non-linearity of the equations which could further aid in design and understanding of newer generation of bearings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.