Abstract

The activity of unsupported Ni–Mo sulfide catalysts is studied in the hydroconversion of benzothiophene and dibenzothiophenes in the temperature range of 340–380°С and at an increased H2 pressure and in the СО/H2О system. The structure of dispersed catalysts formed by the in situ high-temperature decomposition of oil-soluble precursors (molybdenum hexacarbonyl, nickel naphthenate) is investigated by TEM. Effects of СО/H2О molar ratio, water mass content in the system, and CO pressure on the activity of the catalysts and yields of the products are explored. It is shown that, in the СО/H2О system, the highest conversion of benzothiophene and dibenzothiophene is attained at a temperature of 380°С, a СО pressure of 5 MPa, and a СО/H2О molar ratio of 2. The introduction of alkyl substituents into a dibenzothiophene molecule causes a reduction in the rate of reaction that predominantly occurs via the hydrogenation of aromatic rings. The catalyst activities in hydrogenation under H2 pressure and in the СО/H2О system are comparable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.