Abstract

Multivariate statistical analyses, cluster, factor and discriminant analyses, were used to estimate spatial variations in groundwater chemistry in Eastern Croatia and to identify the main geochemical processes responsible for high arsenic (As) concentrations in the groundwater analyzed. Cluster analysis revealed five different groups of sampling sites linked with groundwater evolution, hydrochemical characteristics and different As content in the groundwater. Two-model factor analysis explained around 50% of total variance of the data sets and enabled identification of the different geochemical processes responsible for higher As concentrations, i.e. decoupled Fe and As reduction and desorption. Using discriminant analysis, a three-parameter discriminant function was derived: electrical conductivity, nitrate and bromide, which yielded highly accurate classification of the samples according to the concentration of As as As-safe (<10μg/L) and As contaminated (>10μg/L). A health risk assessment model was applied to calculate cumulative exposure to As as well as toxic and carcinogenic risks resulting from drinking raw groundwater contaminated by As in Eastern Croatia. Although the results obtained indicate that adverse health effects could be observed among the residents of the villages in which raw groundwater with higher As concentrations has been used, there are no reported cases of arsenicosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.