Abstract
Autochthonous microorganisms inhabiting hydrocarbon polluted marine environments play a fundamental role in natural attenuation and constitute promising resources for bioremediation approaches. Alcanivorax spp. members are ubiquitous in contaminated surface waters and are the first to flourish on a wide range of alkanes after an oil-spill. Following oil contamination, a transient community of different Alcanivorax spp. develop, but whether they use a similar physiological, cellular and transcriptomic response to hydrocarbon substrates is unknown. In order to identify which cellular mechanisms are implicated in alkane degradation, we investigated the response of two isolates belonging to different Alcanivorax species, A. dieselolei KS 293 and A. borkumensis SK2 growing on n-dodecane (C12) or on pyruvate. Both strains were equally able to grow on C12 but they activated different strategies to exploit it as carbon and energy source. The membrane morphology and hydrophobicity of SK2 changed remarkably, from neat and hydrophilic on pyruvate to indented and hydrophobic on C12, while no changes were observed in KS 293. In addition, SK2 accumulated a massive amount of intracellular grains when growing on pyruvate, which might constitute a carbon reservoir. Furthermore, SK2 significantly decreased medium surface tension with respect to KS 293 when growing on C12, as a putative result of higher production of biosurfactants. The transcriptomic responses of the two isolates were also highly different. KS 293 changes were relatively balanced when growing on C12 with respect to pyruvate, giving almost the same amount of upregulated (28%), downregulated (37%) and equally regulated (36%) genes, while SK2 transcription was upregulated for most of the genes (81%) when growing on pyruvate when compared to C12. While both strains, having similar genomic background in genes related to hydrocarbon metabolism, retained the same capability to grow on C12, they nevertheless presented very different physiological, cellular and transcriptomic landscapes.
Highlights
Removal of petroleum-hydrocarbons in marine environments by means of mechanical methods is used as a primary response during oil spill, targeting a large part of the recoverable oil from water
The two genomes shared a functional identity of 80.3%, equivalent to 1952 functional gene categories having the same function over a total of 2413. 340 gene categories were peculiar of KS 293 while only 139 of SK2, but none of them was correlated to alkane metabolism (Table S1)
Microbial degradation represents the ultimate process for the complete clean-up of oil polluted sites, and relays mainly on hydrocarbonoclastic bacteria, such as Alcanivorax spp. which commonly blooms after superficial oil spills (Hara et al, 2004) and whose peculiar metabolism allows them to use almost exclusively hydrocarbons for their growth
Summary
Removal of petroleum-hydrocarbons in marine environments by means of mechanical methods is used as a primary response during oil spill, targeting a large part of the recoverable oil from water. Among the many bacterial phylogenetic groups able to degrade hydrocarbon pollutants in marine environments, Alcanivorax represents a key player This genus consists of Gram-negative, aerobic, halophilic γ-proteobacteria and its representatives are ubiquitous: they have been detected in a wide geographical area from the North Sea to the Pacific Ocean, in both surface waters and deep-sea sediments (Head et al, 2006). They represent a very low proportion of the total bacterial community of pristine waters, these microbes are the first to bloom after superficial oil spills, reaching 80–90% of the whole bacterial community (Syutsubo et al, 2001). This preference toward alkane molecules consumption makes Alcanivorax genus one of the most promising targets for the setup of bioaugmentation-based remediation biotechnologies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.