Abstract
Bumblebees leave traces of cuticular hydrocarbons on flowers they visit, with the amount deposited being positively related to the number of visits. We asked whether such footprint hydrocarbons are retained on flowers for sufficiently long periods of time so as to reflect bee visitation in pollination studies. In laboratory experiments, flower corollae (Primula veris, Digitalis grandiflora) visited by Bombus terrestris workers retained bee-derived nonacosenes (C(29)H(58)) in near-unchanged quantities for 24 hours, both at 15 and 25 degrees C. Additionally, synthetic (Z)-9-tricosene applied to flower corollae of the deadnettle Lamium maculatum was retained for 48 hours in an unchanged quantity. In a field survey, the amount of footprint alkenes on flowers of comfrey (Symphytum officinale) plants was positively correlated with the number of bumblebee visits that those plants had received during the day. Together, these data suggest that flowers retain a long-term quantitative record of bumblebee visitation. The analysis of petal extracts by gas chromatography could provide a cheap and reliable way of quantifying bumblebee visits in landscape scale studies of pollination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.