Abstract

This paper develops a methodology for optimizing the hydro unit commitment (HUC) for the Three Gorges Project (TGP) in China. The TGP is the world's largest and most complex hydropower system in operation. The objective is to minimize the total operational cost. The decision variables are the startup or shutdown of each of the available units in the system and the power releases from the online units. The mathematical formulation must take into account the head variation over the operation periods as the net head changes from hour to hour and affects power generation. Additionally, the formulation must consider the operation of 32 heterogeneous generating units and the nonlinear power generation function of each unit. A three-dimensional interpolation technique is used to accurately represent the nonlinear power generation function of each individual unit, taking into account the time-varying head as well as the non-smooth limitations for power output and power release. With the aid of integer variables that represent the on/off and operation partition statuses of a unit, the developed HUC model for the TGP conforms to a standard mixed integer linear programming (MILP) formulation. We demonstrate the performance and utility of the model by analyzing the results from several scenarios for the TGP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.