Abstract

Sewer bend manholes are frequent elements of urban drainage systems. Any deviation of straight-lined supercritical flow, as within the manhole, generates shock waves, possibly impinging at the manhole end or imposing a hydraulic jump. Then the free-surface flow regime abruptly breaks down and backwater effects occur. Thus it is important to know the maximum discharge that safely can pass across a bend manhole, as a function of its geometry, without generating collapsing flow. This study conducted calibrated numerical simulations to assess the hydraulic features of supercritical bend manholes with variable deflection angles, curvature radii, and lengths of straight downstream extension elements. The numerical model was validated previously with data from analogous physical model tests documented in the literature. The combined data from the numerical simulation and from the physical model indicated a hydraulic capacity of the bend manholes for different geometrical setups. It was demonstrated that the hydraulic capacity of a bend manhole increases with increased curvature radii and straight extension lengths, whereas the effect of the deflection angle is less significant. A multiple regression technique provided an empirical equation indicating the normalized discharge capacity of supercritical bend manholes as a function of the governing geometrical parameters, along with the approach flow filling ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.