Abstract

Background/purposeThe mineralized tissue-inductive ability and anti-inflammatory properties of hydraulic calcium silicate-based (HCSB) sealers have not been fully elucidated. This study aimed to evaluate the effects of the HCSB sealers Bio-C sealer (BioC), Well-Root ST (WST), and EndoSequence BC sealer (BC), on osteoblastic differentiation/mineralization and proinflammatory cytokine synthesis by macrophages. Materials and methodsDiluted extracts of set sealers or calcium chloride solutions of approximately equivalent Ca2+ concentrations were applied to a mouse osteoblastic cell line (Kusa-A1 cells) and lipopolysaccharide-stimulated mouse macrophage cell line (RAW264.7 cells). Expressions of osteoblastic markers in Kusa-A1 cells and proinflammatory cytokines in RAW264.7 cells were evaluated by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Mineralized nodules were detected by Alizarin red S staining. Cell proliferation was assessed by WST-8 assay and cell attachment on set sealers was examined by scanning electron microscopy. ResultsThe three sealer extracts significantly upregulated osteocalcin and osteopontin mRNA, and promoted significant mineralized nodule formation in Kusa-A1 cells. The three sealer extracts significantly downregulated the mRNA expressions of interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor (TNF)-α and protein levels of IL-6 and TNF-α in RAW264.7 cells. Calcium chloride solutions induced osteoblastic differentiation/mineralization. AH Plus Jet (a control sealer) extract did not. The three HCSB sealers did not interfere with the growth and attachment of Kusa-A1 cells. ConclusionBioC, WST, and BC were biocompatible, upregulated osteoblastic differentiation/mineralization, and downregulated proinflammatory cytokine expression. Ca2+ released from HCSB sealers might be involved, at least in part, in the induction of osteoblastic differentiation/mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.