Abstract

We present a study of the hydration shells of some carbohydrate polymers of commercial and biological importance, namely, agave fructans, inulin, and maltodextrin, employing terahertz time-domain spectroscopy and differential scanning calorimetry. We observe that the hydration numbers calculated using terahertz spectroscopy are marginally higher than those of the calorimetric values. We attribute this discrepancy to the definition of hydration number, which in a way correlates with the physical process used to quantify it. The aqueous solutions show a non-proportional increase in the absorption coefficient and the hydration number, with a decrease in the carbohydrate concentration. We demonstrate that this behavior is consistent with the “chaotropic” or “structure breaking” model of the hydration shell around the carbohydrates. In addition, the study reveals that agave fructans and inulin have good hydration ability. Given the high glass transition temperature and good hydration ability, these carbohydrates may behave as good bio-protectants and hydrating additives for food and beverages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.