Abstract

The role of water in the formation of particles from atmospheric trace gases is not well understood, in large part due to difficulties in detecting its presence under atmospheric conditions and the variety of possible structures that must be screened computationally. Here, we use infrared spectroscopy and variable-temperature ion trap mass spectrometry to investigate the structural motifs adopted by water bound to ammonium bisulfate clusters and their temperature dependence. For clusters featuring only acid-base linkages, water adopts a bridging arrangement spanning an adjacent ammonium and bisulfate. For larger clusters, water can also insert into a bisulfate-bisulfate hydrogen bond, yielding hydration isomers with very similar binding energies. The population of these isomers shows a complex temperature evolution, as an apparent third isomer appears with a temperature dependence that is difficult to explain using simple thermodynamic arguments. These observations suggest that the thermodynamics of water binding to atmospheric clusters such as these may not be straightforward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.