Abstract

Hydration rate of calcium oxide has been investigated for a suspended single pellet into an atmosphere of air with a controlled humidity using a computer aided thermo-gravimetric technique. It has been found that the hydration reaction takes place on a sharp, well defined interface between the product layer and the unreacted core. A theoretical model for this reaction, that takes into account the sample swelling, was derived and employed to estimate the values for the rate constant and the effective diffusivity of the water vapor in the Ca(OH) 2 layer. These results suggest that gas mass transfer, pore diffusion and chemical reaction were all contributing resistances in the model. The calcination temperature and the water vapor partial pressure are the two most important variables that affect the hydration rate of lime. The higher the calcination temperature, the lower the hydration rate and the higher the water vapor partial pressure, the higher the hydration rate. The hydration temperature was found to play also a very important role in the phenomena involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.